목록DeepLearning (21)
꿈 많은 사람의 이야기
포스팅 개요 이번 포스팅은 자연어처리(NLP) 논문 중 A Lite BERT for Self-supervised Learning of Language Representations라는 논문을 리뷰하는 포스팅입니다. 본 논문은 NLP논문에서 ALBERT라고 많이 알려진 논문입니다. 앞서 GPT, BERT, RoBERTa 논문 리뷰에 이어서 진행하는 자연어처리 논문 시리즈 다섯 번 째 포스팅입니다. 추가로 해당 포스팅의 내용은 제가 진행하는 사내 자연어처리 스터디에서 발표한 자료를 블로그로 정리한 자료임을 알려드립니다. 자연어처리 논문 리뷰는 아래와 같은 순서로 할 예정이며 이번 포스팅은 그 다섯 번 째 ALBERT 논문입니다. GPT-1 (https://lsjsj92.tistory.com/617) BERT ..
포스팅 개요 이번 포스팅은 파이썬(Python) MLflow 예제(example) 정리 두 번째 포스팅이며 지난 번 MLflow 첫 번째 글 이후로 작성하는 두 번째 MLflow 글입니다. MLflow는 머신러닝(machine learning) 혹은 딥러닝 (deep learning)과 같은 모델들의 라이프 사이클을 관리해주는 라이브러리인데요. 이번 MLflow 포스팅은 아래와 같은 내용을 다룹니다. MLflow Project 관리 및 재배포 & Package Mlflow 머신러닝 모델 API serving MLflow 실험 환경 설정 (experiment setting) 지난 번 mlflow 1탄 글은 아래와 같습니다. https://lsjsj92.tistory.com/623 이수진의 블로그 안녕하세요..
포스팅 개요 이번 포스팅은 Ubuntu20.04 LTS 환경에서 텐서플로우(tensorflow) GPU 설치 및 환경 설정을 셋팅하는 방법에 대해 정리합니다. Ubuntu20.04 환경에 Python을 설치하고 관련 cuda, cudnn 등을 설치해 최종적으로 tensorflow에서 gpu가 동작되는 것을 확인해보고자 합니다. 본 포스팅을 작성하기 전 테스트해본 Ubuntu 환경은 아래와 같습니다. AWS EC2 g4dn 인스턴스 장비 AWS EC2 P3 type 인스턴스 장비 AWS EC2 P2 type 인스턴스 장비 AWS EC2 g3 type instance 장비 위 4개의 환경에서 전부 잘 동작됨을 확인하였으며, 본 포스팅에서는 그 중 g4dn 장비를 기준으로 설명합니다. g4dn, p3, g3,..
포스팅 개요 이번 포스팅은 지난 포스팅에 이어서 파이썬(Python) BentoML에 대해서 작성하는 2번째 글입니다. BentoML은 머신러닝(machine learning) 혹은 딥러닝(deep learning) 모델을 API 형태로 서빙할 수 있도록 기능을 제공해주는 파이썬(Python) 라이브러리 입니다. 지난 포스팅에서는 Machine Learning model API serving BentoML에 대해서 소개 및 기본 예제를 소개했는데요. 이번 포스팅에서는 BentoML 예제 위주로 아래와 같은 내용을 간단하게 소개하고자 합니다. Tensorflow 2.X 기반의 딥러닝 모델 BentoML 적용하기 Dockerfile을 이용해서 Docker image 생성 후 API serving 적용하기 다..
포스팅 개요 이번 포스팅은 자연어 처리(NLP) 논문 중 GPT-2(Language Models are Unsupervised Multitask Learners) 논문에 대한 리뷰를 작성하는 포스팅입니다. 앞서 GPT-1, BERT에 이어서 자연어 처리 논문 시리즈 정리하는 세 번째 포스팅입니다. 추가로 해당 포스팅의 내용은 제가 진행하는 사내 자연어 처리 스터디에서 발표한 자료를 블로그로 정리한 자료임을 알려드립니다. 자연어 처리 논문 리뷰는 아래와 같은 순서로 할 예정이며 이번 포스팅은 그 세 번째 GPT-2 논문입니다. (순서는 바뀔 수 있습니다.) GPT-1 (https://lsjsj92.tistory.com/617) BERT (https://lsjsj92.tistory.com/618) GPT-2..
포스팅 개요 본 포스팅은 머신러닝(machine learning)의 라이프 사이클을 관리해주는 mlflow에 대해서 정리하는 포스팅입니다. mlflow란 무엇이고 어떻게 사용하는지 예제(example)와 함께 정리하고자 합니다. MLflow와 관련된 포스팅은 2번에 걸쳐서 작성할 예정입니다. 첫 번째 포스팅 ( 이번 글 ) MLflow란 무엇인가? MLflow Tracking 간단한 사용 방법과 예제 코드 두 번째 포스팅 MLflow Projects 관리 및 재배포 & Package MLflow Model API Serving MLflow 실험 환경 설정 (experiment setting) 제가 mlflow를 정리하고 공부하면서 참고했던 자료는 아래와 같습니다. https://github.com/mlf..
포스팅 개요 이번 포스팅은 머신러닝 모델(machine learning model) 혹은 딥러닝 모델(Deep Learning model)을 API 형태로 서빙(serving) 할 수 있는 Python BentoML에 대해서 간단하게 소개하고 예제(example)을 정리하는 글입니다. BentoML글은 아래와 같이 총 2개 혹은 3개 정도의 글로 정리하려고 합니다. Machine learning model serving BentoML 간단 소개 및 설치 방법과 기본 예제(example) ( 이번 글 ) Tensorflow(Keras)와 같이 사용하는 법, 2개 이상 모델을 사용하는 법 및 Docker 등 다양한 예시 정리 이번 포스팅은 위의 내용 중 bentoml이란 무엇인가? bentoml 사용법과 예..
포스팅 개요 본 포스팅은 Google에서 발표한 자연어 처리(NLP) 논문 중 BERT(BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding) 논문을 리뷰한 포스팅입니다. 앞서 GPT-1 논문 리뷰에 이어서 자연어 처리 논문 시리즈 정리하는 두 번째 포스팅입니다. 추가로 해당 포스팅의 내용은 제가 진행하는 사내 자연어 처리 스터디에서 발표한 자료를 블로그로 정리한 자료임을 알려드립니다. 자연어 처리 논문 리뷰는 아래와 같은 순서로 할 예정이며 이번 포스팅은 그 두 번째 BERT 논문입니다. (순서는 바뀔 수 있습니다.) GPT-1(https://lsjsj92.tistory.com/617) BERT ( 이번 포스팅 ..
안녕하세요. 날씨가 많이 춥네요.오늘은 딥러닝 영상 기반 강의인 스탠포드(stanford) 대학교 cs231n 2017년 강의 9번쨰 강의 정리입니다. 지난 시간에 7강까지 하고 8강은 넘어갔었는데요. 8강은 여러 딥러닝 software들을 소개해줍니다. 혹 궁금하신 분들이 있으시면 봐보세요! 이번 9강은 여태 나왔었던 훌륭한 CNN 모델들을 소개해줍니다. AlexNet(알렉스넷), googLeNet(구글넷), VGG Net, ResNet(레즈넷) 등을 소개하는 강의입니다. 이런 모델들은 imagenet과 localization 대회에서 우수한 성적을 거둔 모델입니다. LeNet은 가장 초창기 CNN 모델이죠.그리고 연구가 좀 더 되서 2012년이 되었습니다.그 전에는 사람이 수작업을 하거나 그랬었는데요..
모든 코드는 아래 깃허브에 올려놓았습니다. https://github.com/lsjsj92/keras_basic 지난번까지 multi classification 이미지 분류를 해봤습니다 하지만 모든 카테고리 분류가 multi이지는 않죠~ 그래서 이번에는 이진 분류(binary classification)을 해보겠습니다 cat dog로 해볼게요 개냐 고양이냐?를 판단하는 이미지 분류 작업입니다 폴더는 2개입니다 cat, dog 즉, 고양이 강아지 이렇게 입니다. 그리고 각 폴더 아래에 이렇게 고양이 사진들이 있죠. 고양이와 강아지(개) 사진은 크롤링해서 긁어 왔습니다 그리고 각 사진은 25000개 정도 있습니다. 데이터는 충분한 것 같네요 keras의 ImageDataGenerator를 굳이 사용안해도 될..