목록Kaggle (26)
꿈 많은 사람의 이야기
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/bniEAl/btqExsJ2Pe5/J7ReccR4Xv54rMgExC0O81/img.png)
포스팅 개요 이번 포스팅은 네트워크 분석(network analysis)에서 커뮤니티 탐지(community detection)에 대해서 정리하는 글입니다. 또한, community detection의 알고리즘 중 louvain 알고리즘에 대해서도 간략하게 소개하려고 합니다. 본 포스팅에서 참조한 글과 파이썬(Python)으로 실습한 자료의 데이터 셋은 아래와 같습니다. https://www.kaggle.com/stackoverflow/stack-overflow-tag-network https://danbi-ncsoft.github.io/works/2018/11/12/network_analysis-1.html https://arxiv.org/abs/0803.0476 https://github.com/ta..
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/sMpMC/btqEmLRt1p1/KK57jgovIO4VhpMogYBR1K/img.png)
포스팅 개요 이번 포스팅은 지난 글(kubeflow pipeline iris data)에 이어 kubeflow 예제(kubeflow example)에 대해서 작성합니다. 지난 글은 kubeflow 설치하는 방법과 kubeflow를 간단하게 사용할 수 있는 방법에 대해서 알아보았는데요. 이번 포스팅은 kubeflow 예제를 타이타닉(titanic data)데이터와 함께 예제를 작성합니다. 특히, AWS 서비스들과 연동하여 머신러닝 파이프라인(machine learning pipeline)을 구축해 보려고 합니다. 지난 포스팅은 아래 링크이므로 혹시 kubeflow가 설치되어 있지 않거나, 간단한 kubeflow 예제를 보고 싶으신 분들은 참조하시길 바랍니다. kubeflow 설치 : https://lsjs..
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/86oNb/btqBE1BI64b/bMhit09dQd7PD6vGT3aal0/img.jpg)
포스팅 개요 해당 글에 대한 코드는 아래 github 링크에 전부 올려두었습니다. https://github.com/lsjsj92/recommender_system_with_Python/blob/master/004.%20recommender%20system%20basic%20with%20Python%20-%203%20Matrix%20Factorization.ipynb lsjsj92/recommender_system_with_Python recommender system tutorial with Python. Contribute to lsjsj92/recommender_system_with_Python development by creating an account on GitHub. github.com 이..
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/biDM7t/btqBukoSR9B/Akx9r2J3cFgKeFmWpe85Lk/img.jpg)
포스팅 개요 해당 글에 대한 코드는 아래 github 링크에 전부 올려두었습니다. https://github.com/lsjsj92/recommender_system_with_Python/blob/master/004.%20recommender%20system%20basic%20with%20Python%20-%203%20Matrix%20Factorization.ipynb lsjsj92/recommender_system_with_Python recommender system tutorial with Python. Contribute to lsjsj92/recommender_system_with_Python development by creating an account on GitHub. github.com 이..
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/cYLndG/btqBiBZt8Vw/ajev82fnHnN26u6V4kXCF0/img.jpg)
포스팅 개요 해당 글에 대한 코드는 아래 github 링크에 전부 올려두었습니다. https://github.com/lsjsj92/recommender_system_with_Python/blob/master/003.%20recommender%20system%20basic%20with%20Python%20-%202%20Collaborative%20Filtering.ipynb lsjsj92/recommender_system_with_Python recommender system tutorial with Python. Contribute to lsjsj92/recommender_system_with_Python development by creating an account on GitHub. github.co..
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/k3EWa/btqAWceMpfo/QDTzHAv9IvvEyKcsgffnUk/img.jpg)
포스팅 개요 해당 글에 대한 코드는 아래 github 링크에 전부 올려두었습니다. https://github.com/lsjsj92/recommender_system_with_Python lsjsj92/recommender_system_with_Python recommender system with Python. Contribute to lsjsj92/recommender_system_with_Python development by creating an account on GitHub. github.com 이번 포스팅은 파이썬(Python)을 활용해서 추천 시스템(recommendation system) 중 콘텐츠 기반 필터링(content based filtering)을 이해하고 만들어보는 포스팅입니다...
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/bR6D6V/btqACHzjtlj/irKMcoRlLVuP4qYMRR0XXK/img.jpg)
포스팅 개요 머신러닝(machine learning)과 딥러닝(deep learning)에서 사용되는 앙상블 중 스태킹 앙상블(stacking ensemble) 2번째 포스팅입니다. 지난 포스팅에서는 스태킹 앙상블의 기본적인 방법과 배경 지식을 소개했습니다. https://lsjsj92.tistory.com/558 머신러닝 스태킹 앙상블(stacking ensemble) 이란? - 스태킹 앙상블 기본편(stacking ensemble basic) 포스팅 개요 머신러닝과 딥러닝에서 자주 사용하는 알고리즘이 있습니다. 특히, 머신러닝쪽에서 많이 사용하는데 그것은 앙상블(ensemble)이라는 방법입니다. 앙상블(ensemble)은 크게 보팅(voting), 배깅(bagging.. lsjsj92.tistory..
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/dP9yWW/btqAyHeFK1E/xjOYQKaZEDBRbmTBHycFsk/img.jpg)
포스팅 개요 머신러닝과 딥러닝에서 자주 사용하는 알고리즘이 있습니다. 특히, 머신러닝쪽에서 많이 사용하는데 그것은 앙상블(ensemble)이라는 방법입니다. 앙상블(ensemble)은 크게 보팅(voting), 배깅(bagging), 부스팅(boosting)으로 나뉘어지는데 추가로 스태킹(stacking)이라는 방법도 있습니다. 스태킹 앙상블(stacking ensemble)은 캐글(kaggle)에서 점수를 조금이라도 더 높이고자 할 때 사용하는 앙상블 방법입니다. 이번 포스팅은 이러한 머신러닝 스태킹 앙상블(stacking ensemble)에 대해서 기본적인 구조를 알아보는 포스팅입니다. 참고 출처는 아래와 같습니다. https://www.kaggle.com/getting-started/18153 ht..
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/ekWF7x/btqAskYHrGv/dkhr6mzctikDjTfxT5jNy1/img.jpg)
포스팅 개요 이번 포스팅은 머신러닝과 딥러닝에서 많이 사용하는 데이터 이상치 탐지(outlier detection)에 대해서 작성합니다. 또한, 지난 포스팅인 캐글의 신용카드 사기 탐지 대회 데이터셋(kaggle credit card fraud detection data)을 이용하며 신용카드 사기 탐지 3편입니다. 참조한 자료는 kaggle의 커널(https://www.kaggle.com/janiobachmann/credit-fraud-dealing-with-imbalanced-datasets) 입니다. 그 외의 참조 자료는 구글링 자료입니다. 코드는 아래 github에 존재합니다. https://github.com/lsjsj92/machine_learning_basic lsjsj92/machine_le..
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/btJar1/btqAnn12FzJ/dzwssK2lLVzltZikiNJHBk/img.jpg)
포스팅 주제 더보기 이번 포스팅은 지난 포스팅에 이어서 캐글의 신용카드 사기 탐지(kaggle credit card fraud detection) 데이터를 활용합니다. 또한, kaggle credit card fraud detection의 커널 중 https://www.kaggle.com/janiobachmann/credit-fraud-dealing-with-imbalanced-datasets 커널을 참조하여 공부하고 정리하였습니다. 이번 글은 지난 글에서 진행한 신용카드 사기 탐지 데이터의 데이터 스케일(data scale)을 변경시켜보려고 합니다. 그리고 이렇게 데이터 스케일이 변경되었을 때 머신러닝 모델 성능이 어떻게 변화되는지 살펴보겠습니다. 지난 포스팅에서는 데이터 원본을 그대로 사용하여 단순히..