목록캐글 (20)
꿈 많은 사람의 이야기
포스팅 개요 해당 글에 대한 코드는 아래 github 링크에 전부 올려두었습니다. https://github.com/lsjsj92/recommender_system_with_Python/blob/master/003.%20recommender%20system%20basic%20with%20Python%20-%202%20Collaborative%20Filtering.ipynb lsjsj92/recommender_system_with_Python recommender system tutorial with Python. Contribute to lsjsj92/recommender_system_with_Python development by creating an account on GitHub. github.co..
포스팅 개요 해당 글에 대한 코드는 아래 github 링크에 전부 올려두었습니다. https://github.com/lsjsj92/recommender_system_with_Python lsjsj92/recommender_system_with_Python recommender system with Python. Contribute to lsjsj92/recommender_system_with_Python development by creating an account on GitHub. github.com 이번 포스팅은 파이썬(Python)을 활용해서 추천 시스템(recommendation system) 중 콘텐츠 기반 필터링(content based filtering)을 이해하고 만들어보는 포스팅입니다...
포스팅 개요 머신러닝과 딥러닝에서 자주 사용하는 알고리즘이 있습니다. 특히, 머신러닝쪽에서 많이 사용하는데 그것은 앙상블(ensemble)이라는 방법입니다. 앙상블(ensemble)은 크게 보팅(voting), 배깅(bagging), 부스팅(boosting)으로 나뉘어지는데 추가로 스태킹(stacking)이라는 방법도 있습니다. 스태킹 앙상블(stacking ensemble)은 캐글(kaggle)에서 점수를 조금이라도 더 높이고자 할 때 사용하는 앙상블 방법입니다. 이번 포스팅은 이러한 머신러닝 스태킹 앙상블(stacking ensemble)에 대해서 기본적인 구조를 알아보는 포스팅입니다. 참고 출처는 아래와 같습니다. https://www.kaggle.com/getting-started/18153 ht..
포스팅 주제 더보기 이번 포스팅은 지난 포스팅에 이어서 캐글의 신용카드 사기 탐지(kaggle credit card fraud detection) 데이터를 활용합니다. 또한, kaggle credit card fraud detection의 커널 중 https://www.kaggle.com/janiobachmann/credit-fraud-dealing-with-imbalanced-datasets 커널을 참조하여 공부하고 정리하였습니다. 이번 글은 지난 글에서 진행한 신용카드 사기 탐지 데이터의 데이터 스케일(data scale)을 변경시켜보려고 합니다. 그리고 이렇게 데이터 스케일이 변경되었을 때 머신러닝 모델 성능이 어떻게 변화되는지 살펴보겠습니다. 지난 포스팅에서는 데이터 원본을 그대로 사용하여 단순히..
이번 포스팅은 머신러닝으로 신용카드 사기를 탐지하는 모델을 만들어보려고 합니다. 해당 포스팅의 데이터는 kaggle에서 제공해준 kaggle credit card fraud를 사용했습니다. 또한, 한 커널을 필사하면서 진행하며 참고했는데요. 커널은 아래와 같습니다. (https://www.kaggle.com/janiobachmann/credit-fraud-dealing-with-imbalanced-datasets) 머신러닝의 기본적인 내용을 공부하면서 이것을 어떻게 적용할 수 있을까?를 정말 많이 고민하게 됩니다. 단순히 캐글에서 제공해주는 타이타닉으로 해본다? 좀 뭔가 현설직이지는 않습니다. 개인적으로는 이 신용카드 사기 탐지가 머신러닝 기본기를 다지기도 좋고 재밌기도 하더군요! 그래서 머신러닝으로 신..
이번에도 딥러닝으로 자연어 처리 하는 파트 입니다. deep learning Natural Language Processing(NLP) kaggle에서 spooky-author 데이터가 있는데요. 글이 있으면 저자가 누군지 예측하는 그런 데이터입니다!아마 캐글 자연어 처리 대회중 toxic, quora 이후 유명한 데이터가 아닌가 싶습니다시작하죠! 역시 필요한 라이브러리를 먼저 불러옵니다keras를 사용해서 딥러닝 모델을 구축하기에 keras library를 불러옵니다그리고 사이킷런(scikit-learn)의 LabelEncoder도 사용합니다카테고리 데이터를 라벨화 시켜주기 위해서요! 간단하게 EDA를 먼저 진행합니다.카테고리 value_counts() 값은 거의 비슷합니다완전 unbalanced하지는..
이전에 캐글(kaggle) nlp인 toxic 데이터를 가지고 필사를 했습니다https://lsjsj92.tistory.com/448 이번에도 마찬가지로 toxic 데이터를 가지고 캐글 커널을 필사합니다.기존에 했던 것과 같습니다. 하지만 어텐션 메커니즘이 추가된 코드이고 glove 데이터를 이용해서 모델 weight를 제공해줍니다.특히 glove 데이터를 추가해서 word embedding을 하는 방법은 정말 많이 사용해서 이번 기회에 정리하고자 합니다. 언제나 그렇듯이 필요한 라이브러리르 불러옵니다keras를 사용했고 모델과 전처리에 필요한 Tokenizer 및 LSTM, Embedding, Dropout 등을 가지고 옵니다그리고 이번 모델에서는 Attention을 class로 만들어서 사용하기 때문..
이번 커널 필사편은 7주차 이후로 또 다시 자연어 처리 편입니다이 커널은 toxic 이라는 데이터로 알려져 있는데요. 캐글에서 자연어 처리(nlp) 데이터 셋으로 많이 유명합니다.일종의 분류 문제입니다. 하지만 label이 1개가 아닌 6개를 가진 특이한 데이터 구조입니다 처음 캐글을 시작할 때 타이타닉 다음으로 이 데이터 셋으로 했었는데..당시에는 아무것도 모를 때라 그냥 너무 어렵다.. 하고 포기했었는데요처음 봤을 때보다 지금이 7개월 정도 흘렀는데 이젠 좀 눈에 보이네요 ㅎㅎ 필사를 하면서 이해가 되더군요제가 그 만큼 공부를 했다는 거겠죠 ㅎㅎ 바로 진행합니다 역시 처음에 필요한 라이브러리를 가져와줍니다keras, matplotlib, seaborn, pandas, numpy 등을 가져와줍니다lay..
이번 커널 필사편은 자연어 처리 부분입니다.당분간은 자연어 처리 위주로 글을 올릴 예정입니다캐글에 있는 자연어 처리 데이터 중 쉬운 편에 속하는 스팸(sparm or ham) 데이터를 가지고 해당 글이 스팸인지 아닌지를 딥러닝으로 처리해보겠습니다.https://www.kaggle.com/uciml/sms-spam-collection-dataset캐글 데이터는 여기서 구할 수 있습니다! 먼저 필요한 라이브러리를 불러옵니다파이썬의 판다스(pandas), numpy와 그래프를 그릴 matplotlib, seaborn을 불러옵니다.그리고 머신러닝 라이브러리 scikit learn(사이킷런)과 딥러닝 라이브러리인 keras(케라스)를 불러옵니다 데이터는 v1, v2 컬럼으로 각각 라벨, 문장으로 되어있습니다.하지..
이번 캐글 필사 편은 지난 필사 편(https://lsjsj92.tistory.com/435)에 이은 home credit의 두 번째 필사입니다. 이번에는 다른 커널을 진행해봅니다.지난 커널에서는 EDA를 위주로 봤는데요이번에는 실제 모델을 만들고 제출을 해봅니다.그리고 application_train.csv의 기본 파일 외에 bureau라는 data를 가지고 고객이 이 회사에서 대출하기 전에 다른 금융 기관에서 대출했던 내역을 참고해서 모델을 만들어 봅니다. 필사한 커널은 사진 위에 나와있습니다.마찬가지로 기본적인 numpy, pandas, matplotlib, seaborn을 import합니다.그리고 application_train, test.csv를 가져오지 않고 bureau.csv를 가져옵니다.이..