목록사이킷런 (7)
꿈 많은 사람의 이야기
이번에도 딥러닝으로 자연어 처리 하는 파트 입니다. deep learning Natural Language Processing(NLP) kaggle에서 spooky-author 데이터가 있는데요. 글이 있으면 저자가 누군지 예측하는 그런 데이터입니다!아마 캐글 자연어 처리 대회중 toxic, quora 이후 유명한 데이터가 아닌가 싶습니다시작하죠! 역시 필요한 라이브러리를 먼저 불러옵니다keras를 사용해서 딥러닝 모델을 구축하기에 keras library를 불러옵니다그리고 사이킷런(scikit-learn)의 LabelEncoder도 사용합니다카테고리 데이터를 라벨화 시켜주기 위해서요! 간단하게 EDA를 먼저 진행합니다.카테고리 value_counts() 값은 거의 비슷합니다완전 unbalanced하지는..
이번 커널 필사편은 자연어 처리 부분입니다.당분간은 자연어 처리 위주로 글을 올릴 예정입니다캐글에 있는 자연어 처리 데이터 중 쉬운 편에 속하는 스팸(sparm or ham) 데이터를 가지고 해당 글이 스팸인지 아닌지를 딥러닝으로 처리해보겠습니다.https://www.kaggle.com/uciml/sms-spam-collection-dataset캐글 데이터는 여기서 구할 수 있습니다! 먼저 필요한 라이브러리를 불러옵니다파이썬의 판다스(pandas), numpy와 그래프를 그릴 matplotlib, seaborn을 불러옵니다.그리고 머신러닝 라이브러리 scikit learn(사이킷런)과 딥러닝 라이브러리인 keras(케라스)를 불러옵니다 데이터는 v1, v2 컬럼으로 각각 라벨, 문장으로 되어있습니다.하지..
새해 첫 목표를 두고 있는 새벽 5시 캐글 필사 편 1주차 내용이다. 사실 원래 다른 데이터로 진행하려고 했는데 어쩌다 보니 타이타닉으로 넘어왔다. 머신러닝 탐구생활이라는 책으로 시작하려고 했지만 쉽지 않았기 때문이다. 또한, 데이터 분석을 한동안 안했더니 감을 잃은 것도 컸다. 그리고 마침 페이스북 그룹인 캐글 코리아(kaggle korea)에서 대회를 타이타닉을 주제로 하고 있기에 타이타닉으로 진행했다. 이 과정에서 1주일이 날라갔다 ㅠ 그래서 타이타닉 편으로 시작! 이 필사는 다양한 커널을 참조했다. 타이타닉 커널을 보면 open되어 있는 커널 중 인기 많은 커널 2개와 약간의 내 아이디어? 를 짬뽕시켜서 진행했다. 많이 참조한 대표적인 커널은 https://www.kaggle.com/ash316/..
요즘 머신러닝을 공부하면서 여러가지 책들을 많이 찾고 있다.근데 마땅히 끌리는 책이 없더라.. 나는 머신러닝 기초부터 배우고 싶었는데 기초에 대한 설명은 거의 없고사이킷런 라이브러리 사용하는 방법에 대해서만 설명이 주구장창 나와있는 책이 대부분이었다.물론 라이브러리 사용하는 책들도 썩 맘에 드는 책은 없었다 아.. 그래서 어쩌지 유료 강의를 들어야하나.. 돈은 없는데 하는데 지인이 일단 뭐라든 시작은 해보라고 책을 추천해주었다. 파이썬 라이브러리를 활용한 머신러닝 이미 유명한 책이다.사이킷런 라이브러리를 개발한 개발자가 쓴 책이다. 이 책을 시작한지 벌써 1달.. 진짜 힘들었다.처음에는 뭔 말인지 이해도 안되고 왜 책을 이딴식으로 썼지 라는 생각뿐이었다.포기할까 생각도 많이 했지만.. 결국 끝끝내 성공했..
이전 글인http://lsjsj92.tistory.com/350 에서 파이썬으로 머신러닝을 진행해 뉴스 카테고리 분석을 만들었다.keras(케라스)와 scikit learn(사이킷런)을 이용해서 만든 카테고리 분류이다 이번에는 이 데이터를 이용해서파이썬에서 wordcloud(워드클라우드)로 시각화를 진행할 것이다.또한, gensim의 word2vec를 이용해서 연관 단어를 추출해보려고 한다 일단 워드클라우드가 되려면 mapreduce(맵리듀스)가 되어 있어야 한다.즉, word count(워드 카운트)가 되어 있어야 한다. 그리고 그 워드 카운트는 가장 많이 카운트 된 단어가 위쪽으로 나오게 할 것이다.이 과정에선 hadoop hdfs와 spark를 이용할 것이다하둡은 2.7 버전, 스파크는 2.0.3 ..
최근 네이버 뉴스 기사를 토대로 카테고리를 분류하는 머신러닝을 진행해봤다먼저 정치, 경제, 사회, IT 등을 파이썬으로 크롤링했다 데이터는 아래와 같이 모아졌다 각 카테고리별 폴더로 데이터를 떨궜다.문화, 경제, it, 오피니언, 정치, 사회 총 6개의 카테고리를 크롤링했으며 위와 같이 엑셀파일에 날짜, 제목, 내용을 긁어왔다. 이제 이 내용들을 전처리 작업 및 형태소 분석을 해야했다.왜냐하면 content에 보면 위와 같이 flash 오류를 우회하기 위한 함수 추가 등 이런 문구가 있다.또한, 특수 문자를 제거할 것이었고, 숫자, 영어도 제거하려고 했다.왜냐하면 한글을 기준으로 하려고 했기 때문이다 형태소 분석기는 은전한닢(mecab)으로 진행했다.은전한닢은 한글 형태소 분석기로 정말 좋다 konlpy..
요즘 머신러닝과 딥러닝을 공부하고 있습니다 블로그에 다 정리해서 올리고 싶은데 처음부터.. 너무 복잡하고 올리는데 시간적 소모가 커서 감히 엄두가 안나네요 ㅠㅠ그래서 중간중간 만든 결과를 올려보려고 합니다저는 주로 케라스(keras)와 사이킷런(scikit learn)으로 공부하고 있습니다사이킷런이야 파이썬에서 머신러닝으로 유명한 라이브러리죠. 케라스는 딥러닝에서 많이 쓰는데요 (물론 머신러닝도 가능합니다.)텐서플로우(tensorflow)보단 사용법도 쉽고 접근성이 좋아서 케라스를 선택해서 공부하고 있습니다.(물론 keras 내부는 tensorflow가 동작됩니다.) 아무튼 저는 그 동안 공부한 것으로 비만도 측정을 해봤습니다!1. 데이터 수집2. 훈련3. 모델 생성4. 모델을 이용한 예측 크게 4가지 ..