목록대규모언어모델 (5)
꿈 많은 사람의 이야기
포스팅 개요이번 포스팅은 추천 시스템 방법 중 추천(Recommendation)을 위해 개인화를 고려한 LLM 모델 및 방법을 소개한 PALR: Personalization Aware LLMs for Recommendation 논문을 리뷰하고 정리하는 포스팅입니다.대규모 언어 모델(Large Language models, LLM)을 활용한 다양한 추천 시스템 방법들이 소개되고 있는데요. 본 논문은 LLM을 통해 사용자 정보를 추출하고 LLM에서 발생할 수 있는 할루시네이션 등을 방지할 수 있도록 후보 셋을 제공하는 등의 방법론을 제시합니다. 또한, 저자들은 추천 시스템을 수행하기 위한 LLM 파인튜닝(fine-tuning) 방법도 소개합니다. 본 논문은 저자들이 아마존 알렉사(Amazon Alexa) 소..
포스팅 개요이번 포스팅은 대규모 언어 모델(Large Language Models, LLM)을 쉽고 빠르게 배포(deploy), 추론(inference) 및 서빙(serving)할 수 있는 vLLM 라이브러리에 대해서 알아봅니다. vLLM이란 무엇이고, vLLM을 사용해서 어떻게 LLM을 배포하고 실행하는지 예제(example) 형태로 정리합니다. 결과적으로 vLLM을 사용하면 빠른 속도로 LLM들을 API 형태로 서빙 및 배포할 수 있습니다. vLLM과 관련된 글들은 아래와 같이 주제별로 분리되어 있습니다. vLLM 사용법과 소개 : 본 포스팅vLLM을 OpenAI 서버(server)로 배포하는 방법 : https://lsjsj92.tistory.com/673OpenAI 서버로 배포된 vLLM을 랭체인..
포스팅 개요본 포스팅은 추천 시스템에 대규모 언어 모델(Large Language Models, LLM)을 결합해 연구한 LlamaRec: Two-Stage Recommendation using Large Language Models for ranking이라는 논문을 읽고 정리한 포스팅입니다.본 논문은 검색 단계인 retrieval 단계와 LLM 기반으로 만든 Ranking 단계로 구성되어 Two-Stage 방법을 제안하는데요. 그 결과로 효율성도 좋은 LLM 기반 추천 시스템을 구성할 수 있었다고 합니다. 본 논문은 아래 링크에서 보실 수 있습니다.https://arxiv.org/abs/2311.02089 LlamaRec: Two-Stage Recommendation using Large Languag..
포스팅 개요이번 포스팅은 대규모 언어 모델(Large Language Model, LLM)을 개인 로컬 환경에서 실행하고 배포하기 위한 Ollama 사용법을 정리하는 포스팅입니다. Ollama를 사용하면 유명한 모델들인 LLaMA나 Mistral와 같은 LLM 모델들을 쉽게 사용할 수 있도록 로컬에서 서버 형식으로 구성할 수 있는데요. Ollama가 무엇인지, 어떻게 설치하고 사용하는지를 정리해보고자 합니다. 본 포스팅은 아래 사이트를 참고해서 작성했습니다. https://github.com/ollama/ollama https://github.com/ollama/ollama-pythonhttps://ollama.com/ https://github.com/ollama/ollama/blob/main/docs..
포스팅 개요 본 포스팅은 대규모 언어 모델(Large Language Model, LLM) 시대에서 데이터 사이언스(Data Science) 교육이 어떻게 변화되어야 하는지 다룬 논문 "What Should Data Science Education Do with Large Language Model?"을 리뷰하는 포스팅입니다. 워싱턴, 스탠포드, 팬실배니아, 럿거스 대학에서 공동으로 연구한 논문인데요. LLM 시대에서의 교육의 미래에 대한 연구를 진행한 논문입니다. 본 포스팅에서 리뷰한 논문은 아래 링크에서 확인하실 수 있습니다. https://arxiv.org/abs/2307.02792 What Should Data Science Education Do with Large Language Models?..