목록2025/01 (2)
꿈 많은 사람의 이야기
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/CxCoM/btsLSQKgo0E/qWkrMfNr9EssCa3KGwzUv1/img.png)
포스팅 개요본 포스팅은 LLM을 활용한 추천 시스템 논문인 TALLRec: An Effective and Efficient Tuning Framework to Align Large Language Model with Recommendation이라는 논문을 리뷰한 포스팅입니다. 글을 쓰고 있는 시점으로 300회가 넘는 인용이 있고 LLM을 추천(Recommendation) 테스크로 파인튜닝(Fine-tuning)을 한 방법을 제안하는 논문입니다. 이를 위해 LoRA 방법을 채택하였고 기존에 대규모 언어 모델(Large Language Model, LLM)이 추천 시스템 영역에 Alignment가 부족했는데, 이를 보완하여 LLM이 추천 시스템 영역으로 확장된 Large Recommendation Langu..
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/bVXVCo/btsLDvTmdjz/yO9Fz3Ly248QAegiCxVNF1/img.png)
포스팅 개요이번 포스팅은 PostgreSQL의 PGVector extension을 활용해 벡터 데이터베이스로 사용하여 파이썬(Python)의 FastAPI를 연동해 데이터를 저장하고 조회하는 방법에 대해 정리하는 포스팅입니다. 이때, PostgreSQL에 데이터를 저장하는 방법에는 벡터 데이터베이스로 활용하므로 일반 데이터를 저장하면서 동시에 임베딩 모델(embedding model)을 활용해 텍스트를 벡터(vector)로 변환하여 저장하게 됩니다. 또한, 데이터를 조회하는 과정은 1) 제목(title)과 완벽하게 일치하는 exact match 기반 검색과 2) 코사인 유사도(cosine similarity) 기반으로 텍스트 벡터 유사도 기반으로 검색을 하는 과정을 정리합니다.PostgreSQL와 PGV..