목록cs231 (5)
꿈 많은 사람의 이야기
안녕하세요! 오늘은 크리스마스네요벌써 연말이군요.. 오늘 하루 행복하시구요연말 마무리 잘하시고 새로운 한 해를 맞이할 준비 잘 하셨으면 좋겠습니다! 이번 장에서는 이미지와 관련된 새로운 것을 배우게 됩니다.제가 여태 올렸던 강의 정리 및 cs231n에서 소개했던 방법은 다 이미지 분류(image classification)이었습니다. 하지만 이건 가~~~장 기본적인 것입니다. 여기서 좀 더 해야할 것이 있죠. 바로 이미지 localization, segmentation, object detection 등입니다. 이번 장에선 이런 것들을 배웁니다. 우리는 앞에서 image가 들어오면 어떤 deep neural network를 통과해서 그 결과로 feature vector가 나오게 되고 최종 결과로 imag..
안녕하세요. 으.. 날씨가 많이 춥네요. 건강 조심하세요. 이것도 정리가 조금 늦었네요카카오 형태소 분석기 설치랑, 예전에 했던 LSTM 프로젝트 등을 정리하느라고 조금 늦어졌습니다.이번 포스팅은 딥러닝 영상처리 강의 스탠포드 대학교 cs231n 2017강의 10번째 강의 RNN입니다.RNN(Recurrent Nerual Networks)는 CNN과 함께 정말 많이 사용하는 네트워크입니다. 시계열 데이터(timestamp) 등에서 많이 사용되고 그 예로는 문자열 데이터, 주식(코인) 데이터, 비디오 데이터 등 정말 다양한 데이터가 RNN과 함께 사용될 수 있습니다. 아 그리고 이번 강의는 좀 정리가 힘드네요. 이 강사가 말이 너무 빠르고 그냥 훅훅 지나가서..에흌ㅋㅋㅋㅋㅋ 힘듭니다. 아무튼 시작해볼까요 ..
안녕하세요. 날씨가 많이 춥네요.오늘은 딥러닝 영상 기반 강의인 스탠포드(stanford) 대학교 cs231n 2017년 강의 9번쨰 강의 정리입니다. 지난 시간에 7강까지 하고 8강은 넘어갔었는데요. 8강은 여러 딥러닝 software들을 소개해줍니다. 혹 궁금하신 분들이 있으시면 봐보세요! 이번 9강은 여태 나왔었던 훌륭한 CNN 모델들을 소개해줍니다. AlexNet(알렉스넷), googLeNet(구글넷), VGG Net, ResNet(레즈넷) 등을 소개하는 강의입니다. 이런 모델들은 imagenet과 localization 대회에서 우수한 성적을 거둔 모델입니다. LeNet은 가장 초창기 CNN 모델이죠.그리고 연구가 좀 더 되서 2012년이 되었습니다.그 전에는 사람이 수작업을 하거나 그랬었는데요..
안녕하세요. 이번 포스팅은 딥러닝 기반 영상 인식 강의에서 최고로 평가되고 있는 스탠포드 대학교의 CS231n 강의 7강 정리입니다.지난 6장까지 해서 뉴럴 네트워크, backpropagation, optimization, activation functions(sigmoid, ReLU, tanh 등), weight initialization, data preprocessing(normalization, regularization 등을 학습했습니다. 벌써 많이 배웠죠??그리고 하이퍼 파라미터(hyperparameter)를 찾기 위해 grid search와 random search도 보았습니다.이번 시간에는 optimization에 대해서 더 배우고 regularization에 대해서 더 배웁니다. 우리가 ..
이번 포스팅은 스탠포드 대학 cs231n 4강 정리 포스팅입니다. 이번 강의에서는 backpropagation(오차역전파)과 neural network에 대해서 배웁니다.그럼 바로 시작하겠습니다. 맨 처음 부분은 여기 강의 과제에 대한 이야기라서 넘어가도록 하겠습니다. 우리는 지난 시간에 score function에 대해서 배웠습니다.그리고 SVM의 loss인 hinge loss에 대해서 배웠습니다.또 다른 loss인 softmax loss를 배웠습니다. 이건 cross entropy loss라고도 불리우죠. 그리고 규제(regularization)에 대해서도 배웠습니다. 이후 optimization에 대해서도 배웠습니다. 이 과정에서 경사하강법을 배웠지요. 그냥 일반적으로 계산하는 방법은 numeric..