목록Regularization (2)
꿈 많은 사람의 이야기
안녕하세요. 이번 포스팅은 딥러닝 기반 영상 인식 강의에서 최고로 평가되고 있는 스탠포드 대학교의 CS231n 강의 7강 정리입니다.지난 6장까지 해서 뉴럴 네트워크, backpropagation, optimization, activation functions(sigmoid, ReLU, tanh 등), weight initialization, data preprocessing(normalization, regularization 등을 학습했습니다. 벌써 많이 배웠죠??그리고 하이퍼 파라미터(hyperparameter)를 찾기 위해 grid search와 random search도 보았습니다.이번 시간에는 optimization에 대해서 더 배우고 regularization에 대해서 더 배웁니다. 우리가 ..
요즘 모두의 연구소에서 딥러닝 스터디에 참가하고 있습니다. cs231n 강의를 참고해서 스터디 하고 있는데요 이걸 정리하려고 합니다. 1, 2강은 뭐 그냥저냥한 내용이니까 3강부터 정리하려고 합니다 3강은 loss function과 optimization의 내용입니다. 이 둘의 핵심을 알아보도록 하죠 시작! 먼저 지난 시간의 내용을 복습하고 넘어갑니다. 지난 시간에는 이미지 분류에 대해서 알아보았습니다. 그 중 이미지 분류가 왜 힘들고 쉽지 않은지에 대해서 알아보았죠. 조명, 변형, 은닉 등의 문제점 때문이었습니다. 그리고 CIFAR-10 데이터셋에 대해서도 알아보았습니다. 이후에 크로스 벨리데이션(cross validation), KNN을 알아보았습니다. 또 data-driven방식을 알아보았죠 그리고..