목록전체 글 (575)
꿈 많은 사람의 이야기
포스팅 개요이번 포스팅은 시간이 지날수록 중요성이 부각되고 있는 인공지능 윤리(AI 윤리, AI Ethics)에 대해서 AI 개발자의 입장에서 정리해본 생각을 작성한 포스팅입니다. 본 포스팅은 지극히 개인적인 생각과 입장을 정리한 포스팅이니, 부족한 점이 있으면 양해 부탁드리면서 피드백 주시면 좋을 것 같습니다. 또한, 본 포스팅의 내용은 당근대장(당근=당연히 대장님)님께서 주최하시는 AI 기획자 Day에서 발표한 자료를 기반으로 작성하였습니다.전체 발표 자료는 포스팅 하단에 첨부하였습니다.포스팅 본문포스팅 개요에서도 언급하였듯, 본 포스팅은 AI 윤리에 대해서 AI 개발자의 입장에서 간단하게 생각을 정리한 포스팅입니다. 부족한 한 개발자가 가지고 있는 생각을 정리한 포스팅이니, 가벼운 마음으로 봐주시면..
포스팅 개요최근 OpenAI에서 GPT-4o 등이 나오는 등 LLM(Large Language Models)의 발전은 계속 진행되고 있습니다. 그러면서 동시에 LLM과 다양한 application, 다양한 domain, 다양한 downstream task와 어떻게 연계할 수 있는가도 지속적으로 연구되고 있는데요. 본 포스팅은 추천 시스템(Recommendation System) 영역에서 LLM을 어떻게 연결시킬 수 있는지를 고민합니다. 그리고 추천 시스템 연구에서 가장 중요하게 고민되고 있는 설명가능성(Explainbility)를 해결하기 위해 LLM과 결합해하여 설명가능성을 부여하는 방법에 대해 알아보고 파이썬(Python) 코드로 예제(example)를 구현해보겠습니다. 본 포스팅 외에도 저는 이전..
포스팅 개요이번 포스팅은 추천 시스템 방법 중 추천(Recommendation)을 위해 개인화를 고려한 LLM 모델 및 방법을 소개한 PALR: Personalization Aware LLMs for Recommendation 논문을 리뷰하고 정리하는 포스팅입니다.대규모 언어 모델(Large Language models, LLM)을 활용한 다양한 추천 시스템 방법들이 소개되고 있는데요. 본 논문은 LLM을 통해 사용자 정보를 추출하고 LLM에서 발생할 수 있는 할루시네이션 등을 방지할 수 있도록 후보 셋을 제공하는 등의 방법론을 제시합니다. 또한, 저자들은 추천 시스템을 수행하기 위한 LLM 파인튜닝(fine-tuning) 방법도 소개합니다. 본 논문은 저자들이 아마존 알렉사(Amazon Alexa) 소..
포스팅 개요이번 포스팅은 대규모 언어 모델(Large Language Models, LLM)을 쉽고 빠르게 배포(deploy), 추론(inference) 및 서빙(serving)할 수 있는 vLLM 라이브러리에 대해서 알아봅니다. vLLM이란 무엇이고, vLLM을 사용해서 어떻게 LLM을 배포하고 실행하는지 예제(example) 형태로 정리합니다. 결과적으로 vLLM을 사용하면 빠른 속도로 LLM들을 API 형태로 서빙 및 배포할 수 있습니다.이번 포스팅을 작성하면서 참고한 자료는 아래와 같습니다. https://docs.vllm.ai/en/latest/https://github.com/vllm-project/vllm?tab=readme-ov-filehttps://python.langchain.com/d..
포스팅 개요본 포스팅은 추천 시스템에 대규모 언어 모델(Large Language Models, LLM)을 결합해 연구한 LlamaRec: Two-Stage Recommendation using Large Language Models for ranking이라는 논문을 읽고 정리한 포스팅입니다.본 논문은 검색 단계인 retrieval 단계와 LLM 기반으로 만든 Ranking 단계로 구성되어 Two-Stage 방법을 제안하는데요. 그 결과로 효율성도 좋은 LLM 기반 추천 시스템을 구성할 수 있었다고 합니다. 본 논문은 아래 링크에서 보실 수 있습니다.https://arxiv.org/abs/2311.02089 LlamaRec: Two-Stage Recommendation using Large Languag..
포스팅 개요이번 포스팅은 대규모 언어 모델(Large Language Model, LLM)을 개인 로컬 환경에서 실행하고 배포하기 위한 Ollama 사용법을 정리하는 포스팅입니다. Ollama를 사용하면 유명한 모델들인 LLaMA나 Mistral와 같은 LLM 모델들을 쉽게 사용할 수 있도록 로컬에서 서버 형식으로 구성할 수 있는데요. Ollama가 무엇인지, 어떻게 설치하고 사용하는지를 정리해보고자 합니다. 본 포스팅은 아래 사이트를 참고해서 작성했습니다. https://github.com/ollama/ollama https://github.com/ollama/ollama-pythonhttps://ollama.com/ https://github.com/ollama/ollama/blob/main/docs..
포스팅 개요 이번 포스팅은 세계 최대 에듀테크 박람회 중 하나인 ASU+GSV(ASU GSV)의 AIR SHOW를 다녀온 후기를 정리합니다. 생성형 AI 시대에 맞서서 교육 시장은 어떻게 변화하고 있는지, 에듀테크의 발전은 어떻게 진행되고 있는지 짧게나마 생생하게 체험할 수 있었는데요. 그 이야기를 간략하게 정리해보고자 합니다. https://www.asugsvsummit.com/airshow https://www.asugsvsummit.com/about-the-summit ASU+GSV AIR Show — AI Revolution | April 13-15, 2024 Join 15,000+ educators, innovators, and AI explorers at the world’s largest g..
포스팅 개요 본 포스팅은 대규모 언어 모델(Large Language Model, LLM) 시대에서 데이터 사이언스(Data Science) 교육이 어떻게 변화되어야 하는지 다룬 논문 "What Should Data Science Education Do with Large Language Model?"을 리뷰하는 포스팅입니다. 워싱턴, 스탠포드, 팬실배니아, 럿거스 대학에서 공동으로 연구한 논문인데요. LLM 시대에서의 교육의 미래에 대한 연구를 진행한 논문입니다. 본 포스팅에서 리뷰한 논문은 아래 링크에서 확인하실 수 있습니다. https://arxiv.org/abs/2307.02792 What Should Data Science Education Do with Large Language Models?..
포스팅 개요 이번 포스팅은 추천 시스템의 성능을 평가하는 방법인 평가 지표에 대해서 정리하는 포스팅입니다. 다양한 추천 시스템 평가 방법 중 본 포스팅은 NDCG(Normalized Discounted Cumulative Gain)와 MAP(Mean Average Precision) 그리고 Hit Rate에 대해서 정리합니다. 더불어서, Recall@K와 Precision@K에 대해서도 같이 정리하겠습니다. 포스팅 본문 추천 시스템은 온라인 쇼핑몰과 같은 이커머스 서비스 등에서 사용자와 서비스에 긍정적인 영향력을 제공할 수 있는 강력한 시스템입니다. 이러한 추천 시스템은 다양한 평가 방법이 있습니다. 비즈니스와 서비스에 따라 평가 방법이 다를 수 있고 흔히 정확도와 같은 오프라인 메트릭(offline m..
포스팅 개요 이번 포스팅은 저 이수진의 2023년 회고를 작성한 포스팅입니다. 작년과 마찬가지로 정말 많은 일이 다양하게 있었던 23년인데요. 23년에 겪었던 일들과 경험 그리고 솔직한 마음을 23년을 돌아보며 일기 느낌으로 작성해보겠습니다. 2023년을 마치면서 2023년을 마치면서 참 여러 생각이 든다. 정말 여러 가지 일들이 많이 터졌던 해였던 것 같다. 그만큼 여러 가지로 바빴고 정신이 없는 한 해였다. 그리고 매번 느끼지만, 시간이 정말 너무너무 빠르다. 2022년만큼 일과 공부적으로 바쁘지는 않았다. 왜냐하면 공부할 수 있는 물리적 시간이 2022년보다 줄었기 때문이다. 그 이유는 결혼, 이사가 있었다. 당연히 공부보다 이게 더 중요하다고 생각했기에 2023년은 공부에 투자하는 시간을 줄이고..